If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144x^2-4=0
a = 144; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·144·(-4)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*144}=\frac{-48}{288} =-1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*144}=\frac{48}{288} =1/6 $
| 9+b=3 | | −2(3x+4)+2=4x−10x+8 | | 6y+18=4y-8 | | 50.95-6.95x=11 | | 25x+45=170 | | -1=17+w | | 15g=17+16g | | -8(2-5x)=-136 | | 50.95+6.95x=11 | | 4=-6b-11+33 | | 46=-5x+1 | | -8(2-5x)=136 | | 1/5x+7/5x=40 | | -2+r=30 | | q/3-9=-10 | | 12=14a-7a-9 | | 12w+4(6–w)=2w+60 | | 2(s+6+s)+2s=120 | | y+-17=-10 | | 1/5x=7/5x=40 | | -8(x+0.8)=1.2 | | 4(-3x+2)=-12x+8 | | 1/6+1/3x=2/3x | | 3(2x-6)=4x+2 | | 5(x+1)=2x+16 | | 10+y=–9y | | b12–19=–13 | | 5(2+x)=12+x-2 | | 3(6x+5)=-30 | | x(8-x)^2=76 | | 8x-12x-9=10x-4x+31 | | 72/x=(70/(x-2))+1 |